A Variable Stepsize Implementation for Stochastic Differential Equations
نویسندگان
چکیده
Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge–Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this forces the stepsize to be very small. This paper presents a completely general variable stepsize implementation of an embedded Runge–Kutta pair for solving SDEs numerically; in this implementation, there is no restriction on the value used for the stepsize, and it is demonstrated that the integration remains on the correct Brownian path.
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملA hybrid method with optimal stability properties for the numerical solution of stiff differential systems
In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...
متن کاملNordsieck representation of high order predictor-corrector Obreshkov methods and their implementation
Predictor-corrector (PC) methods for the numerical solution of stiff ODEs can be extended to include the second derivative of the solution. In this paper, we consider second derivative PC methods with the three-step second derivative Adams-Bashforth as predictor and two-step second derivative Adams-Moulton as corrector which both methods have order six. Implementation of the proposed PC method ...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملSolving Volterra integro-differential equations by variable stepsize block BS methods: Properties and implementation techniques
In this article, block BS methods are considered for the numerical solution of Volterra integro-differential equations (VIDEs). Convergence and stability properties are analyzed. A new Matlab code for the solution of VIDEs, called VIDEBS, is presented. Numerical results using a variable stepsize implementation show the effectiveness of the proposed code. 2014 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 24 شماره
صفحات -
تاریخ انتشار 2003